Home

Magra carrinho abstrato atomically thin mos2 a new direct gap semiconductor o que étnico Incontáveis

Enhanced light-matter interaction in atomically thin MoS2 coupled with 1D  photonic crystal nanocavity
Enhanced light-matter interaction in atomically thin MoS2 coupled with 1D photonic crystal nanocavity

Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2  Heterostructures | Scientific Reports
Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures | Scientific Reports

Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field  Effect Transistors and Hole Contacts | Scientific Reports
Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field Effect Transistors and Hole Contacts | Scientific Reports

Directly visualizing the momentum-forbidden dark excitons and their  dynamics in atomically thin semiconductors
Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Transition metal dichalcogenide monolayers - Wikipedia
Transition metal dichalcogenide monolayers - Wikipedia

Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor |  Scientific Reports
Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor | Scientific Reports

Temperature induced crossing in the optical bandgap of mono and bilayer MoS2  on SiO2 | Scientific Reports
Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2 | Scientific Reports

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Monolayer MoS2 for nanoscale photonics
Monolayer MoS2 for nanoscale photonics

Band structure of MoS2 (A) showing the direct and indirect band gap, as...  | Download Scientific Diagram
Band structure of MoS2 (A) showing the direct and indirect band gap, as... | Download Scientific Diagram

Bandgap tunability at single-layer molybdenum disulphide grain boundaries |  Nature Communications
Bandgap tunability at single-layer molybdenum disulphide grain boundaries | Nature Communications

Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and  Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie  International Edition - Wiley Online Library
Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie International Edition - Wiley Online Library

Nanomaterials | Free Full-Text | Benchmark Investigation of Band-Gap  Tunability of Monolayer Semiconductors under Hydrostatic Pressure with  Focus-On Antimony | HTML
Nanomaterials | Free Full-Text | Benchmark Investigation of Band-Gap Tunability of Monolayer Semiconductors under Hydrostatic Pressure with Focus-On Antimony | HTML

Excitons in atomically thin 2D semiconductors and their applications
Excitons in atomically thin 2D semiconductors and their applications

The fabrication of atomically thin-MoS2 based photoanodes for  photoelectrochemical energy conversion and environment remediation: A  review - ScienceDirect
The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review - ScienceDirect

PDF] Stability of direct band gap under mechanical strains for monolayer  MoS2, MoSe2, WS2 and WSe2 | Semantic Scholar
PDF] Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2 | Semantic Scholar

High-harmonic generation from an atomically thin semiconductor | Nature  Physics
High-harmonic generation from an atomically thin semiconductor | Nature Physics

Strain engineering band gap, effective mass and anisotropic Dirac-like cone  in monolayer arsenene: AIP Advances: Vol 6, No 3
Strain engineering band gap, effective mass and anisotropic Dirac-like cone in monolayer arsenene: AIP Advances: Vol 6, No 3

Direct bandgap engineering with local biaxial strain in few-layer MoS2  bubbles | SpringerLink
Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles | SpringerLink

PDF] Indirect-to-direct band gap crossover in few-layer MoTe₂. | Semantic  Scholar
PDF] Indirect-to-direct band gap crossover in few-layer MoTe₂. | Semantic Scholar

Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$:  A New Direct-Gap Semiconductor
Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor